{{'Search' | translate}}

EasyTagTM L-[35S]-Methionine, 500µCi (18.5MBq), Stabilized Aqueous Solution

EasyTag TM缓冲液[5s] - 甲硫氨酸,5mCi(185MBq),稳定水溶液

Company: PerkinElmer
Catalog#: NEG709A005MC
Other protocol()

A Method for SUMO Modification of Proteins in vitro
[Abstract]  The Small Ubiquitin-related Modifier (SUMO) is a protein that is post-translationally added to and reversibly removed from other proteins in eukaryotic cells. SUMO and enzymes of the SUMO pathway are well conserved from yeast to humans and SUMO modification regulates a variety of essential cellular processes including transcription, chromatin remodeling, DNA damage repair, and cell cycle progression. One of the challenges in studying SUMO modification in vivo is the relatively low steady-state level of a SUMO-modified protein due in part to the activity of SUMO deconjugating enzymes known as SUMO Isopeptidases or SENPs. Fortunately, the use of recombinant SUMO enzymes makes it possible to study SUMO modification in vitro. Here, we describe a sensitive method for ... [摘要]  小泛素相关修饰物(SUMO)是一种蛋白质,其翻译后添加到真核细胞中并可逆地从其他蛋白质中去除。 SUMO和SUMO途径的酶从酵母到人类都很保守,SUMO修饰调节了多种基本细胞过程,包括转录,染色质重塑,DNA损伤修复和细胞周期进程。 研究SUMO修饰体内的挑战之一是SUMO修饰蛋白的相对低的稳态水平,部分原因是SUMO去缀合酶(SUMO Isopeptidases或SENPs)的活性。 幸运的是,使用重组SUMO酶可以在体外研究SUMO修饰。 在这里,我们描述了一种灵敏的方法,用于检测目标人类蛋白质的SUMO修饰,使用来自兔网织红细胞和放射性标记的氨基酸的体外转录和翻译系统。
【背景】与其他泛素蛋白家族修饰一样,SUMO修饰通过ATP依赖性酶促级联发生,涉及E1激活酶(人类中的Aos1 / Uba2异二聚体),E2结合酶(Ubc9)和许多E3连接之一的连续活性。酶(Gareau和Lima,2010)。具有SUMO缀合共有位点的蛋白质ΨKxE(Ψ是疏水残基,其后是赖氨酸,任何氨基酸和谷氨酸),可以通过哺乳动物中表达的一种或几种SUMO旁系同源物(包括SUMO1,SUMO2)进行有效修饰。或SUMO3(统称为SUMO2 / 3,因为它们的序列同源性为97%)(Gareau和Lima,2010; Flotho和Melchior,2013)。 ...

Radioactive Pulse-Chase Analysis and Immunoprecipitation
[Abstract]  Labeling of newly-synthesized polypeptides with radioactive amino acids followed by immunoprecipitation allows quantitative analysis of the fate of a given protein in a time-dependent manner. This biochemical approach is usually used to study a variety of processes, such as protein folding, co-translational modifications, intracellular transport, and even its rate of degradation. Here, I describe step by step a simple technique to both label newly-synthesized influenza A virus (IAV) hemagglutinin (HA) with [35S]-methionine and then follow its maturation and transport through the secretory pathway by SDS-PAGE and fluorography (Magadan et al., 2013). [摘要]  用放射性氨基酸标记新合成的多肽,随后免疫沉淀允许以时间依赖性方式定量分析给定蛋白质的命运。 这种生物化学方法通常用于研究各种过程,如蛋白质折叠,共翻译修饰,细胞内转运,甚至其降解速率。 在这里,我逐步描述一个简单的技术,以标记新合成的甲型流感病毒(IAV)血凝素(HA)与[35 S] - 甲硫氨酸,然后跟随其成熟和运输通过分泌 通过SDS-PAGE和荧光成像(Magadan等人,2013)。

Protein Translation Study – Label Protein with S35 Methionine in Cells
[Abstract]  To follow protein synthesis, cells should be incubated with radioactive amino acid such as [35S] methionine during mRNA translation. Then, the neosynthetized protein will be identified by an autoradiography after immunoprecipitation with a specific antibody and separation on a polyacrylamide denaturing gel. [摘要]  为了遵循蛋白质合成,在mRNA翻译期间,细胞应与放射性氨基酸如[35S]甲硫氨酸一起温育。 然后,在用特异性抗体免疫沉淀并在聚丙烯酰胺变性凝胶上分离后,通过放射自显影鉴定新合成的蛋白质。