{{'Search' | translate}}
 

 DMEM/F12

DMEM / F-12

Company: Thermo Fisher Scientific
Catalog#: 11320033
Bio-protocol()
Company-protocol()
Other protocol()

Integration of Human Induced Pluripotent Stem Cell (hiPSC)-Derived Neurons into Rat Brain
Author:
Date:
2020-09-05
[Abstract]  Human neuron transplantation offers novel opportunities for modeling human neurologic diseases and potentially replacement therapies. However, the complex structure of the human cerebral cortex, which is organized in six layers with tightly interconnected excitatory and inhibitory neuronal networks, presents significant challenges for in vivo transplantation techniques to obtain a balanced, functional and homeostatically stable neuronal network. Here, we present a protocol to introduce human induced pluripotent stem cell (hiPSC)-derived neural progenitors to rat brains. Using this approach, hiPSC-derived neurons structurally integrate into the rat forebrain, exhibit electrophysiological characteristics, including firing, excitatory and inhibitory synaptic activity, and establish ... [摘要]  [摘要] 人类神经元移植为建模人类神经系统疾病和潜在的替代疗法提供了新的机会。然而,人脑皮层的复杂结构分为六层,具有紧密互连的兴奋性和抑制性神经元网络,这对体内移植技术获得平衡,功能稳定和稳态稳定的神经元网络提出了重大挑战。在这里,我们提出了一项协议,将人类诱导的多能干细胞(hiPSC )衍生的神经祖细胞引入大鼠脑。使用这种方法,hiPSC 衍生的神经元在结构上整合到大鼠前脑中,表现出电生理特性,包括放电,兴奋性和抑制性突触活性,并与宿主电路建立神经元连通性。


[背景] 人类大脑皮层是一个复杂的细胞镶嵌体,在不同的皮质层(I-VI)中包含多样化的神经元亚型,可建立轴突输出和树突状输入的特定模式,提供了皮质电路的基本底物(Rakic,2009; Lodato 等等人,2011; Lui 等人,2011)。特别地,兴奋性和抑制性神经传递的平衡对于适当的脑功能是必需的(Turrigiano和Nelson,2004)。人类诱导的多能干细胞(hiPSC )可以在人类遗传背景下对人类神经系统疾病进行建模(Dolmetsch和Geschwind,2011; Brennand 等,2015; Vera和Studer,2015)。建立体外系统以将hiPSCs ...

A Co-culture Model for Determining the Target Specificity of the de novo Generated Retinal Ganglion Cells
Author:
Date:
2017-04-05
[Abstract]  In glaucoma, the output neurons of the retina, the retinal ganglion cells (RGCs), progressively degenerate, leading to irreversible blindness (Ahram et al., 2015). The ex vivo stem cell method to replace degenerated RGCs remains a potentially viable approach (Levin et al., 2004). However, the success of the approach depends upon the ability of the de novo generated RGCs to connect over the long distance with specific targets in the central visual pathway. Here, we describe a protocol to examine the target specificity of the de novo generated RGCs using a co-culture approach where the RGCs neurites are allowed to choose between specific (superior colliculus; SC) and non-specific (inferior colliculus; IC) tectal targets. [摘要]  在青光眼中,视网膜的输出神经元,视网膜神经节细胞(RGC)逐渐退化,导致不可逆的失明(Ahram等人,2015)。 替代退化RGCs的离体干细胞方法仍然是潜在可行的方法(Levin等人,2004)。 然而,该方法的成功取决于生成RGC的远程连接与中心视觉通路中特定目标的能力。 在这里,我们描述了一种协议,用于使用共培养方法来检查产生RG的产生RGCs的靶特异性,其中RGCs神经突被允许在特异性(上丘(SC))和非特异性 (下丘,IC)构造目标。

青光眼是全球不可逆失明的最常见原因之一(Tham等人,2014)。其特征在于RGC的进行性退化,视网膜的主要输出神经元,其与大脑连接用于视觉感知。不幸的是,目前尚无治疗RGCs变性的治疗方法。无论是外科手术,药理学还是神经保护,管理方法都不能扭转退行性变化(Danesh-Meyer,2011)。鉴于这种棘手的情况,干细胞治疗已经成为替代死亡RGCs的潜在可行方法。这种方法的成功需要:1)功能性和非致瘤性RGC与多能干细胞的定向分化,以及2)产生RGC的新生靶标特异性。我们的实验室最近展示了一种化学定义的方法,通过重述发育机制(Teotia等人,2016),允许RGCs从胚胎干(ES)/诱导的多能干细胞(iPS)细胞中的定向分化。所得的RGC是稳定的,功能性的和非致瘤性的。然而,远离干细胞在青光眼RGC变性中的生物细胞的成功取决于它们的轴突在中心视觉途径中找到适当靶标的能力。移植后,RGC的轴突必须在视网膜内导航,作为视神经退出,决定在视交叉处交叉或不交叉,并达到建立视网膜连接的具体目标。我们已经证明ES ...

A 3D Culture System of Human Immortalized Myometrial Cells
Author:
Date:
2016-10-20
[Abstract]  Myometrium forms the middle layer of the uterus and is mainly composed of the smooth muscle cells. The cells in vitro are usually grown in a single layer (2-dimensional; 2D) format, whereas in vivo cells are structured in an extracellular matrix scaffolding that allows the cells to communicate and respond to environmental cues. We have developed human myometrium and leiomyoma 3-dimensional (3D) culture, wherein the cells retain their molecular characteristics and respond to environmental cues (Malik and Catherino, 2012; Malik et al., 2014). [摘要]  子宫肌层形成子宫的中间层,主要由平滑肌细胞组成。细胞在体外通常生长在单层(2维; 2D)格式中,而体内细胞在细胞外基质支架中结构化,其允许细胞沟通和响应环境线索。我们已经开发了人子宫肌瘤和平滑肌瘤3维(3D)培养物,其中细胞保留其分子特征并响应环境线索(Malik和Catherino,2012; Malik等人,2014)。 br /> [背景] 在过去十年中,随着更多实验室从使用人工2D格式的细胞培养转移到3D细胞培养模型系统,观察到一定的转变,其中细胞生长在允许它们附着并获得更生理结构的基质中。该模型系统为细胞提供更自然的分化状态,并且培养的细胞在体内形成组织样环境。这是一个详细的协议为myometrium 3D细胞培养生长胶原-1矩阵,修改从Malik和Catherino(2012年)。

Comments